TWO FLAVANONES FROM THE ROOT BARK OF LESPEDEZA DAVIDII

MINGSHI WANG, JINGRONG LI and WEIGUO LIU

Department of Phytochemistry, Nanjing College of Pharmacy, Nanjing, People's Republic of China

(Revised received 14 August 1986)

Key Word Index—Lespedeza davidii; Leguminosae; lespedezaflavanone A; lespedezaflavanone B; 6,8-di-γ,γ-dimethylallyl-4'-methyoxy-5,7,2'-trihydroxy-(2S)-flavanone; 8,3'-di-γ,γ-dimethylallyl-5,7,4'-trihydroxy-(2S)-flavanone.

Abstract—Two new flavanones have been isolated from the root bark of Lespedeza davidii and their structures established as 6.8-di- γ , γ -dimethylallyl-4'-methyoxy-5.7,2'-trihydroxy-(2S)-flavanone and 8.3'-di- γ , γ -dimethylallyl-5.7,4'-trihydroxy-(2S)-flavanone on the basis of spectroscopic evidence.

INTRODUCTION

The roots and leaves of Lespedeza davidii Franch., which grows in Zhejiang province have been used as a Chinese drug, he-xue-dan, for the treatment of dysentery and fever [1]. Two new flavanones, named lespedezaflavanone A (1) and lespedezaflavanone B (2), have been isolated from the root bark and their structural elucidation is now described.

RESULTS AND DISCUSSION

Lespedezaflavanone (1), $(M^+ = 438.2059)$ Α $C_{26}H_{30}O_6$, $[\alpha]_D^{11.5} - 60^{\circ} c = 0.250$ CHCl₃), was obtained as yellow needles, mp 157-158° and gave a positive Mg-HCl test. The IR spectrum of 1 showed strong absorptions at $1640 \,\mathrm{cm^{-1}}$ (chelated C=O group) and $3400 \,\mathrm{cm^{-1}}$ (OH). The UV spectrum ($\lambda_{\mathrm{max}}^{\mathrm{MeOH}}$ nm = 295, 345 (sh)) suggested a flavanone structure [2]. The proton magnetic resonance (1HNMR) spectrum of 1 showed $\delta 6.30$, 6.41 and 12.35 (each 1Hs disappeared on the addition of D₂O, OH × 3), δ 2.85 (1H *dd J* = 2.9, 17.3 Hz C_3 - β H), δ 3.15 (1H dd J = 17.3, 13.0 Hz C_3 - α H), δ 5.52 $(1 \text{H} dd J = 2.9, 13.0 \text{ Hz C}_2\text{-H})$ [3]. It also indicated the presence of two γ , γ -dimethylallyl groups [δ 1.69, 1.70, 1.74, 1.81 (each 3H s CH₃ × 4), δ 3.27, 3.34 (each 2H d J = 7.0 Hz Ar-CH₂-CH= \times 2), δ 5.13, 5.22 (each 1H m $CH_2-C\underline{H}=\times 2$ [4], a methoxy group (δ 3.78 3H s) and three aromatic protons [δ 7.10 (1H dJ = 8.5 Hz C₆·-H),

 $\delta 6.50$ (1H dd J = 8.5, 2.5 Hz C₅-H), $\delta 6.47$ (1H d J = 2.5 Hz C₃-H)].

In the MS of 1, the ion peak at m/z 420 was derived from $M - H_2O$ (chelated C_2 .-OH) [5]. The ion peaks at m/z 288 and 150 were derived from a retro-Diels-Alder fragmentation. In view of the ¹ H HMR spectral data, the ion peak at m/z 288 must include the A-ring. It loses C_4H_7 to yield the ion peak at m/z 233 and losses C_4H_8 again to yield the ion peak at m/z 177 and, therefore, the A-ring contains two γ,γ -dimethylallyl groups. On the other hand, the ion peak at m/z 150 arises from the B-ring. It loses CH_3 to yield the ion peak at m/z 135 and, therefore, the B-ring contains a methoxy group.

Positive shifts in the UV spectrum after the addition of sodium acetate and aluminium chloride indicated that the two hydroxy groups at C-5, C-7 were free and since the ¹H NMR spectrum (B-ring) of 1 showed ABX type proton signals of the aromatic ring the methoxy group must be located at C-4.

From these data, the structure 6,8-di- γ,γ -dimethylallyl-4'-methoxy-5,7,2'-trihydroxyflavanone was assigned to 1. As the specific optical rotation of 1 had a minus (-) sign and the ¹H NMR spectrum showed an *aa* coupling constant of C_2 , C_3 -H, like those of other natural flavanones [6], 1 must have an (S)-configuration at C-2.

Lespedezaflavanone B (2) (M⁺ = $408.1915 \, C_{25} H_{28} O_5$, $[\alpha]_D^{16} - 29.13^{\circ} c = 0.515 \, MeOH$) was isolated as colourless needles, mp 141–142°. It gave a negative Gibbs reaction and a positive Mg–HCl test. The IR spectrum of

Short Reports

2 showed strong absorptions at $1630 \,\mathrm{cm}^{-1}$ (chelated C=O group) and $3300 \,\mathrm{cm}^{-1}$ (OH). The UV spectrum $[\lambda_{\max}^{\text{MeOH}} \,\mathrm{nm} = 293, 340(\mathrm{sh})]$ suggested a flavanone structure.

The proton magnetic resonance spectrum of 2 showed δ 5.30 (1H dd J = 13.0, 2.8 Hz C₂-H), δ 3.04 (1H dd J = 17.1, 13.0 Hz C₃- α H), δ 2.76 (1H dd J = 17.1, 2.8 Hz C₃- β H) attributed to the C-ring protons [3]. It also indicated the presence of two γ , γ -dimethylallyl groups δ 1.77, 1.71 (each 6H) s (CH₃)₃ × 2], δ 3.37, 3.29 (each 2H d J = 7.0 Hz Ar-CH₂-CH= × 2), δ 5.31, 5.19 (each 1H m CH₂-CH= × 2), three hydroxy groups [δ 12.00, 6.20 and 5.32 (each 1H s) which shifted in DMSO- d_6 to δ 12.10, 10.75 and 9.50] and four aromatic protons [δ 6.00 (1H s C₆ or C₈-H), δ 6.83 (1H d J = 7.8 Hz C₅-H), δ 7.18 (2H m C₂- and C₆-H)].

In the MS of 2, the ion peaks at m/z 220 and 188 were derived from a retro-Diels-Alder fragmentation. In view of the ¹H NMR spectral data, the ion peak at m/z 220 must include the A-ring. It loses C_4H_7 to yield the ion peak at m/z 165 and, therefore, the A-ring contains one γ,γ -dimethylallyl group. On the other hand, the ion peak at m/z 188 arises from the B-ring. It loses C_4H_7 to yield an ion peak at m/z 133, therefore the B-ring must also contain one γ,γ -dimethylallyl group. There are thus two γ,γ -dimethylallyl groups in 2 one attached to the A-ring and the other to the B-ring.

Positive UV shifts after the addition of sodium acetate, and aluminium chloride indicated that the three hydroxyl groups at C_5 , C_7 and C_4 were free and therefore the γ , γ -dimethylallyl group in the A-ring must be at C_8 [7]. Since the ¹H NMR spectrum (B-ring) of 2 showed ABX type proton signals of the aromatic ring, the γ , γ -dimethylallyl group in the B-ring must be located at C_3 .

From the above analysis, the structure of 2 was concluded to be $8,3'-\gamma,\gamma$ -dimethylallyl-5,7,4'-trihydroxy-flavanone. Since the specific optical rotation of 2 had a minus (-) sign, and the ¹H NMR spectrum showed an aa coupling (J = 13.0 Hz) of C_2 , C_3 -H, like those of other natural flavanones, 2 most probably has an (S)-configuration at C-2.

EXPERIMENTAL

All mps are uncorr. ¹H NMR spectra were measured at 400 MHz with a Bruker AM-400 spectrometer; chemical shifts are given on the ppm scale with tetramethylsilane as an int. standard (s, singlet; d, doublet; t, triplet; m, multiplet; br, broad).

CC was carried out on silica gel (120–160 mesh) and TLC on silica gel G_{F254} . Spots on TLC were visualized by spraying with phosphomolybdic acid and heating. The following solvent systems were employed: solvent A: C_6H_6 -Me₂CO (4:1); solvent B: C_6H_6 -ethyl formate (9:1).

Extraction and isolation. Dried root bark of Lespedeza davidii was extracted with EtOH and the EtOAc soluble portion separated on a silica gel column, eluted with cyclohexane-EtOAc. The fraction from 9:1 was recrystallized from a mixture of petrol and EtOAc to give 1. The fraction from 8:1 was recrystallized from C_6H_6 to give 2.

Lespedezaflavanone A. (1). Green-brown with FeCl₃, positive Gibbs reaction. [α]_D^{11.5} $-60^{\circ} c = 0.250 \text{ CHCl}_3 \text{ MS } m/z$: 438.2059 (M+ C₂₆H₃₀O₆ 47.2%), 420 (47.16%), 405 (10.83%), 377 base peak (100%), 365 (32.45%), 321 (26.51%), 309 (25.30%), 233 (34.81 %), 288 (3.30 %), 273 (13.58 %), 189 (52.47 %), 177 (44.46 %), 150 (21.37%), 135 (11.26%). UV 1 max nm (log s): 295 (4.22), 345 (3.58) (sh); + NaOMe 340 (4.45); + AlCl₃ 315 (4.25); + AlCl₃ +HCl 315 (4.25), 400 (3.45); +NaOAc 341 (4.36); +NaOAc + H₃BO₃ 295 (4.16); 341 (3.86). IR v KBr cm⁻¹: 3400 (OH), 1640 (C=O), 1620, 1520 (arom. C=C), 1380, 1360 (CH)₃. ¹H NMR (CDCl₃): δ 6.30, 6.41 (each 1H, s OH × 2; disappeared on the addition of D₂O), δ 12.35 (1H s C₅-OH; disappeared on the addition of D₂O), δ 2.85 (1H dd J = 2.9, 17.3 Hz C₃- β H), δ 3.15 $(1 \text{H } dd \ J = 17.3, 13.0 \ \text{Hz} \ \text{C}_{3} - \alpha \ \text{H}), \delta 5.52 \ (1 \ \text{H } dd \ J = 2.9, 13.0 \ \text{Hz}$ C_2 -H), $\delta 1.69$, 1.70, 1.74, 1.81 (each 3H s CH₃ × 4), $\delta 3.27$, 3.34 (each 2H d J = 7.0 Hz Ar-CH₂-CH= \times 2), δ 5.13, 5.22 (each 1H m Ar-CH₂-CH= \times 2), δ 3.78 (3H s OCH₃), δ 7.10 (1H d J = 8.5 Hz $C_{6'}$ -H), δ 6.50 (1H ddJ = 8.5, 2.5 Hz $C_{5'}$ -H), δ 6.47 (1H $d J = 2.5 \text{ Hz C}_{3'}\text{-H}$). The relationship of corresponding protons was confirmed by proton spin-decoupling.

Lespedezaflavanone B (2). Green-brown with FeCl₃. Gibbs reaction (-). Mg-HCl (+). $[\alpha]_D^{16}$ -29.13° c = 0.515 MeOH. MS m/z: 408.1915 (M⁺ C₂₅H₂₈O₅ 92.78 %), 393 (13.48 %), 365 (20.78%), 353 (29.26%), 233 (11.40%), 221 (23.31%), 220 (27.34%), 203 (15.37%), 192 (52.33%), 188 (15.81%), 177 (42.37%), 165 base peak (100%), 133 (38.16%). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm $(\log \varepsilon)$: 293 (4.20), 340 (sh) (3.57); + NaOMe 332 (4.40), + AlCl₃ 316 (4.35), 392 (3.57); $+AICl_3+HCl_3$ (4.31), 392 (3.57); + NaOAc 332 (4.28); + NaOAc + H₃BO₃ 293 (4.23), 333 (3.87). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300 (OH), 1630 (C=O), 1600, 1500 (arom. C=C), 1390, 1370 (CH₃). ¹H NMR (CDCl₃): δ 5.30 (1H *dd J* = 13.0, 2.8 Hz C₂-H), δ 3.04 (1H dd J = 17.1, 13.0 Hz C_{3a}-H), δ 2.76 (1H $dd J = 17.1, 2.8 \text{ Hz C}_3-\beta\text{H}, \delta 1.77, 1.71 \text{ [each 6H s (CH₃)₂ × 2]},$ δ 3.37, 3.29 (each 2H d J = 7.0 Hz Ar-CH₂-CH × 2), δ 5.31, 5.19 (each 1H m Ar-CH₂-CH= \times 2), δ 12.00 (1H s C₅-OH), δ 6.20, 5.32 (each 1H s shifted in DMSO- d_6 to δ 10.75 and 9.50 C₇-OH and C_4 -OH), $\delta 6.00$ (1H s C_6 -H), $\delta 6.83$ (1H d J = 7.8 Hz C_5 -H), δ7.18 (2H m C₂, and C₆,-H). The relationship of corresponding protons was confirmed by proton spin-decoupling.

REFERENCES

- Jiangsu College of Modern Medicine (1977) Zhong Yao Da Ci Dian, p. 2825. Publishing House of S & T of Shanghai.
- The Chinese Academy of Sciences (1981) Manual Identification of Flavonoids, p. 519. Publishing House of Science, Beijing.
- Wager, H., Horhammer, L., Ruger, R., Khalil and Farkas, L. (1969) Tetrahedron Letters 19, 1471.
- Komatsu, M., Yokoe, I. and Shirataki, Y. (1978) Chem. Pharm. Bull. 26, 3863.
- Porter, Q. N. and Baldas, J. (1971) Mass Spectrometry of Heterocyclic Compounds, p. 91. Wiley, New York.
- Bohm, B. A. (1975) in The Flavonoids (Harborne, J. B., Mabry, T. J. and Mabry, H., eds). Chapman and Hall, London.
- Sherif, E. A., Gupta, R. K. and Krishnamurti, M. (1980) Tetrahedron Letters 21, 641.